If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43g^2+40g=0
a = 43; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·43·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*43}=\frac{-80}{86} =-40/43 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*43}=\frac{0}{86} =0 $
| (1/2)600t2=19200 | | 12x-x-10x=13-9= | | -1.7=a-9.3 | | 20x+10=5(4x+1) | | (5+2x=)x4 | | 6w-23=7 | | 2(n+2=4n+1-2n | | x/10+x30=2 | | 500-2x=200 | | 2x=(4x+8) | | 9k=3(k-5)-3 | | 1/2t–27=t | | 51z-90=420 | | a+26=80 | | 3x+4(4x+6)=9 | | 4x-14=28-3x | | -17=a-3* | | 43g^2+40=0 | | 16=d=14 | | -8=4x+10 | | Y=x(6)-2 | | 4x+2(x+3)=5(x+8) | | 3x+3=−27. | | 5y+7=3+5y | | -5.9g=-(-10+2.7) | | -5/2x=+2 | | 0=-3+3x | | 247.5=30x+22.5 | | 5(12+2s)=125 | | 7x2+9x=21 | | 41.2=7.1h+12.8 | | .5x-8=2x+10 |